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Many viruses depend on nuclear proteins for replication. Therefore, their viral genomemust enter the nucleus
of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then
describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the
emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled,
(2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex
(NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of
intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced
disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and
structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome
release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through
Modulation of Nuclear Protein Import.
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1. Introduction

In order to establish a productive infection, viruses must overcome
multiple barriers within the host cell. These barriers include the plasma
membrane and underlying cell cortex, an extremely dense cytoplasm
throughwhichmolecular traffic is highly restricted (reviewed in [1]) and
any other membranes that must be crossed in order to access the sites of
viral replicationor assembly.Howdifferent viruses accomplish these feats
depends to a large degree on the size and structure of the virus. Viruses
consist of anRNAorDNAgenome surroundedby eithermultiple copies of
capsid proteins (non-enveloped viruses) or both capsid proteins and a
lipid membrane (enveloped viruses). The size of animal viruses ranges
from approximately 25 nm to over 300 nm. The key features of the
viruses discussed in this review are summarized in Table 1.
Viruses first attach to the host cell through interactions between
viral membrane proteins (enveloped viruses) or three-dimensional
structures on the capsid (non-enveloped viruses) and cell surface
receptors; viruses are then internalized either by direct fusion of the
viral envelope with the plasma membrane, or via one of the cell's
many endocytic pathways (reviewed in [2–4]). If entry is by
endocytosis, then the virus escapes from the endocytic compartment
to the cytosol. The escape strategy depends on the type of virus. For
enveloped viruses, this involves fusion of the viral envelope with
endosomal membranes. For non-enveloped viruses the endosomal
escape process is less well understood, but can involve lysis of the
endosomal membrane employing lytic peptides [3]. The released viral
capsid or nucleoprotein complex then traverses the cytoplasm, often
by associating with cellular motor proteins which traffic along various
cytoskeleton components [1,5]. Upon reaching the cellular compart-
ment where viral replication occurs, the viral genome is released from
the capsid or nucleoprotein complex, often concurrently with capsid
disassembly. After using the cellular machinery for genome synthesis
and production of new viral proteins, progeny virions are assembled,
and then released from the cell. Release is usually through budding at
the plasma membrane or into the endoplasmic reticulum (ER)
followed by exocytosis for enveloped viruses; for non-enveloped
viruses, it is generally thought that virions are released during cell
lysis, although some viruses may also be released by exocytosis [2].

Many viruses, including most DNA viruses and some RNA viruses,
depend on nuclear proteins for replication; therefore, their viral genome
must enter the nucleus of the host cell (reviewed in [6–9]). Although
there are numerous benefits, entry into the nucleus also poses a serious
challenge for these viruses, since the nuclear envelope (NE) acts as a
barrier between the cytoplasm and the nucleus, and transport of
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molecules into and out of the nucleus is tightly regulated. Because many
viruses make use of the host nuclear transport machinery during
infection, we briefly summarize the principles of cellular nuclear
transport. We then describe the diverse strategies used by viruses to
deliver their genomes into the host nucleus, with emphasis on emerging
themes in this field.

2. Nuclear import

The NE consists of an inner nuclear membrane (INM) and an outer
nuclear membrane (ONM) separated by the perinuclear space, a
regular gap of about 30–50 nm. Embedded in these membranes are
the nuclear pore complexes (NPCs)— large protein complexes that act
as passageways for the transport of molecules into and out of the
nucleus. The mammalian NPC is composed of multiple copies of 30
different proteins, called nucleoporins (Nups), arranged in an
octagonal structure that is 120 nm in diameter and has a molecular
mass of 125 MDa (reviewed in [10,11]). In addition to the NPCs, a
major feature of the NE is the nuclear lamina, a thin (20–30 nm)
protein layer that is closely associated with both the INM and the
underlying chromatin. The nuclear lamina is composed primarily of A-
and B-type lamins, members of the intermediate filament protein
family. During cell division of higher eukaryotes, the nuclear lamina
and NE are temporarily disassembled to allow the partitioning of
chromosomes between daughter cells.

Two general mechanisms have been described for nuclear import:
passive diffusion and facilitated translocation. Passive diffusion is for
ions and molecules smaller than 9 nm in diameter or proteins smaller
than 40 kDa, whereas facilitated nuclear import can accommodate the
transport of molecules with diameters of up to 39 nm [12]. The
facilitated nuclear import mechanism requires a signal residing on the
imported molecule (or cargo), and cytoplasmic receptors (called
nuclear import receptors, importins, or karyopherins) that recognize
the signal and mediate the translocation of the cargo through the NPC
(reviewed in [13–15]). Although there are many types of nuclear
localization sequences (NLSs), the first identified and most studied
signal consists of one or two short stretches of basic amino acids, called
the classical NLS (cNLS). Interestingly, the first identified cNLS was
discovered in a viral protein, the large T antigen of simian virus 40
(SV40) [16]. The nuclear import of cNLS-bearingproteins ismediated by
Table 1
Summary of the major characteristics of the viruses discussed in this review.

Virus family Virus size (nm) Structure interacting

Enveloped
Baculovirus
-Autographa californica multiple-capsid
nucleopolyhedrovirus (AcMNPV)
-Trichoplusia ni granulosis virus

60×300 Rod-shaped capsid (3

Herpesvirus
-herpes simplex virus 1 (HSV-1)

180–225 Icosahedral capsid (1

Orthomyxovirus
-influenza A

80–120 Helical vRNP (15×50

Retrovirus
-human immunodeficiency virus 1 (HIV-1)
-murine leukemia virus (MLV)

80–130 PIC (size unclear)

Hepadnavirus
-hepatitis B virus (HBV)

42–47 Icosahedral capsid (3

Non-enveloped
Adenovirus
-adenovirus 2

105 (with fibers) Icosahedral capsid (9

Polyomavirus
-simian virus 40 (SV40)

40–45 Icosahedral capsid or

Parvovirus
-adeno-associated virus 2 (AAV2)
-minute virus of mice (MVM)
-canine parvovirus (CPV)

18–26 Icosahedral capsid (1
(may not interact wit
a heterodimer import receptor consisting of importinα and importin β.
The driving force behind nuclear import is a gradient of the GTPase Ran
across the NE. RanGTP abounds inside the nucleus, while RanGDP
predominateswithin the cytoplasm [17]. In the cytoplasm thebindingof
importins to cargo is favoured, while nuclear RanGTP interacts with
importins leading to the dissociation and subsequent release of the
cargo from the importins into the nucleus [18,19].

An emerging picture is that different transport routes or pathways
exist. In other words, different classes of molecules have different
types of NLSs, which are recognized by different importins (with at
least 28 different importins in humans). Despite significant progress
in identifying NLSs and their receptors (many of which have been
crystallized and their structure solved, reviewed in [13]) and in
characterizing the molecular basis of the recognition of these
molecules, the precise molecular mechanism used by molecules to
cross the NPC remains unknown. Several models have been proposed
in recent years speculating on the mechanism for the facilitated
movement of transport receptors and their cargo through the NPC.
These include the affinity gradient, the virtual gating, the selective
phase partition, the diffuse permeability and the oily spaghetti models
(reviewed in [20,21]). As their names suggest, these models explain
some biophysical aspects of the movement of molecules through the
central channel of the NPC. They take into account either interactions
with or partitioning of transport receptors with Nups containing
phenylalanine–glycine repeats (FG Nups) which occupy the NPC
central channel (reviewed in [22]). Because viral capsids are among
the largest cargos that translocate through the NPC, studies on nuclear
import of viruses might provide important information that can be
used to test the several proposed models for NPC translocation.

3. Nuclear entry of viruses

The general current understanding is that viruses deliver their
genome into the nucleus of their host cells by using the machinery
that evolved for the nuclear import of cellular proteins (i.e., NPCs,
NLSs, importins, GTP, and Ran). Some of the nuclear transport
machinery implicated in the nuclear entry of the viruses discussed
in this review is summarized in Table 2. Because the size and structure
of viruses vary enormously (for example, herpesviruses are 180–
225 nm in diameter [23], but parvoviruses are 18–26 nm in diameter
with NPC and its size (nm) Genome architecture and size (kb) References

0–60×250–300) DNA, double-stranded circular (90–180) [123]

20) DNA, double-stranded linear (152) [23]

–100) RNA, negative sense (13.6) [63,70]

RNA, positive sense (7–13) [159]

2 or 36) DNA, double-stranded circular (3.2) [113,114]

0) DNA, double-stranded linear (36) [96,160]

subviral particle (40–45) DNA, double-stranded circular (5) [161]

8–26)
h NPC)

DNA, single-stranded linear (5) [24]



Table 2
Nuclear transport machinery exploited by the viruses discussed in this review.

Protein Alternative Name(s) Virus References

Importin α Karyopherin α HIV-1 [43,51,52]
Influenza A Virus [72,81,82]
Adenovirus [109]
HBV [118]

Importin β Karyopherin β1 p97 HIV-1 [41]
HSV-1 [87]
Adenovirus [109]
HBV [118]
Influenza A Virus [162]

Importin 7 IPO7 Ran binding protein 7
(RanBP7)

HIV-1 [53–55]
Adenovirus [109]

Transportin 1 TNPO1 Importin β2
Karyopherin β2

Adenovirus [109]

Transportin 3 TNPO3 Importin 12 HIV-1 [56,57]
Influenza A Virus [83]

Nup62 p62 HIV-1 [61]
Nup98 Nup98–Nup96 HIV-1 [61]
Nup153 HIV-1 [45,56,59]

HBV [122]
Nup155 HIV-1 [60]
Nup214 CAN HSV-1 [92]

Adenovirus [106]
Nup358 Ran binding protein 2

(RanBP2)
HIV-1 [56,59]
HSV-1 [89]
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[24]) and because there are several nuclear import pathways, each
virus has evolved a unique strategy to deliver its genome into the
nucleus. As indicated in Fig. 1, five general strategies have been
Fig. 1. Schematic representation of different strategies for nuclear entry of viral genomes. (
disassembled. (2) Influenza A virus undergoes extensive disassembly in the cytoplasm. The c
host transport machinery. (3) HSV-1 capsids use importins to attach to the cytoplasmic side
then enters the nucleus through the NPC. (4) Capsids of the baculovirus AcMNPV cross th
transiently disrupt the NE and nuclear lamina, and enter the nucleus through the resulting
identified, which we have ordered according to where in the cell
uncoating of the viral genome occurs:

1) Some viruses, such as the retrovirus murine leukemia virus (MLV),
gain access to thenucleusduringmitosis,when theNE is temporarily
disassembled.

2) Some viruses, such as human immunodeficiency virus 1 (HIV-1) and
influenza A virus, undergo extensive disassembly in the cytoplasm.
The cytoplasmic released components contain NLSs and are thereby
able to cross the NPC using the host transport machinery.

3) Some viral capsids use importins or viral proteins to attach to the
cytoplasmic side of the NPC. Interaction with the NPC is then used
as a cue for disassembly, and the viral genome crosses the NPC and
is released into the nucleus, often as a complex with viral proteins.
Viruses that use this strategy include herpesviruses (which bind to
the NPC via importins) and adenoviruses (which bind directly to
the NPC).

4) Some viral capsids, such as those of hepatitis B virus (HBV) and
some baculoviruses, are small enough to cross the NPC intact.
Genome release then occurs at the nuclear side of the NPC or inside
the nucleus.

5) Some viruses, such as parvoviruses, do not use the NPC to deliver
their genome into the nucleus; rather, they transiently disrupt the
NE and nuclear lamina, and enter the nucleus through the resulting
gaps.

Although much progress has been made in characterizing the
general nuclear entry strategies of different viruses, many of the
molecular details remain obscure. The study of viral nuclear entry is
1) The MLV PIC gains access to the nucleus during mitosis, when the NE is temporarily
ytoplasmic released vRNPs contain NLSs and are thereby able to cross the NPC using the
of the NPC. Interaction with the NPC then triggers the release of the viral genome, which
e NPC intact. Genome release presumably occurs inside the nucleus. (5) Parvoviruses
gaps.
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complicated by the fact that viral proteins may enter the nucleus
multiple times during the virus life-cycle: both as part of an incoming
capsid or nucleoprotein, and perhaps also as a newly synthesized
protein if assembly of progeny virions occurs in the nucleus. Thus,
identification of NLSs and host factors involved in a particular viral
nuclear import step can be challenging. Post-translational modifica-
tions such as phosphorylation of viral proteins can also play an
important role in the exposure of NLSs (reviewed in [25]). This has
been studied for HBV (see Section 3.4), but is probably true for other
viruses as well. Viral entry into the nucleus and genome release are
part of an intricate dance between the virus and host cell, many details
of which remain to be elucidated. While some viruses modify or
disrupt the cellular nuclear transport machinery during their
replication (reviewed in [26]), in the following sections, we discuss
the five general strategies of nuclear entry of viral genomes with
particular emphasis on the best-studied viruses.

3.1. Nuclear entry during mitosis

Some viruses, such as the retrovirus MLV, can only access the
nucleus of a host cell during mitosis, when the NE is temporarily
disassembled (Fig. 1; reviewed in [27,28]). While it was initially
thought that all non-lentiviral retroviruses required mitosis for
nuclear entry of the viral genome, this is now known not to be the
case (reviewed in [28]). In addition, there is recent evidence that
human papillomaviruses require cell cycle progression in order to
establish infection [29]; whether nuclear entry is the barrier in non-
dividing cells remains to be determined.

Retroviruses are RNA viruses which reverse transcribe their RNA
genomes into DNA; the DNA is then integrated into the host genome,
where it serves as a template for the synthesis of new RNA genomes.
Retroviruses may enter the cell either by direct fusion of the viral
envelope at the cell surface, or by fusion after internalization using an
endocytic route [27]. Fusion results in the release of the viral
nucleoprotein core particle into the cytoplasm. This is followed by a
poorly understood uncoating step and the formation of the reverse
transcription complex, which for MLV includes the viral RNA genome,
reverse transcriptase, integrase and the capsid protein [30]. Reverse
transcription of RNA to DNA produces the pre-integration complex
(PIC), which enters the nucleus to integrate into the host genome.

The PIC of MLV is too large to enter the nucleus through the NPC by
passive diffusion. Several lines of evidence indicate that MLVwaits for
NE disassembly in order for the PIC to enter the nucleus. Most
retroviruses can only infect actively dividing cells. For MLV, it is
thought that the barrier to infection of non-dividing cells is the
inability of the PIC to access the nucleus. When the cell cycle is
arrested at G1/S, MLV PICs are present in the cytoplasm, but DNA
integration is blocked; if the cell cycle is then allowed to progress to
metaphase, the PICs enter the nucleus and integration occurs [31]. In
additional support of this idea, random insertion of an NLS into the
MLV genome followed by high throughput screening led to the
identification of a novel variant that could successfully transduce
growth-arrested cells [32], indicating that nuclear entry is in fact the
normal barrier. Mutations in the MLV p12 (an MLV-specific cleavage
product of the Gag polyprotein) and capsid protein have been shown
to specifically block the appearance of nuclear forms of the viral DNA
[33–35], indicating that these proteins are likely involved in the
inclusion of the PIC within the reforming nucleus after mitosis.

3.2. Genome release in the cytoplasm, followed by entry through the NPC

While similar in many ways to MLV, lentiviruses such as HIV-1 are
able to infect terminally differentiated cells in the absence of cell
division. HIV-1 entry into cells is similar to the process described
above for MLV, although the composition of the resulting PIC is
somewhat different. While the MLV PIC includes reverse transcrip-
tase, integrase and the capsid protein, the HIV-1 PIC is composed of
reverse transcriptase, integrase, matrix protein, and the accessory
protein Vpr, with the capsid protein largely dissociating prior to
nuclear entry (reviewed in [28]). It is generally agreed that the HIV-1
PIC enters the nucleus by active transport through the NPC, but the
molecular mechanism remains poorly understood.

Every component of the HIV-1 PIC has been suggested to participate
in mediating its nuclear entry (reviewed in [28]). Matrix contains NLS-
like sequences which target fusion proteins to the nucleus [36–38]. Vpr
contains an atypical NLS [39,40], and also interacts directly with Nups
[39,41]. In addition, Vpr has been suggested tomediate nuclear entry of
the PIC via disruption of the hostNE (see Section3.5). Integrase contains
several putative NLSs [42–44], and interacts directly with Nup153 [45].
In addition, a 99-bp triple-strandDNA structure in the centre of the viral
DNA called the central polypurine tract (cPPT) or central DNA flap has
also been suggested to participate innuclear entry of the PIC [46,47]. The
cPPT has also been proposed to play a role in uncoating of the viral
genome, since DNA flap-defective virions failed to disassemble both in
infected cells and in an in vitro uncoating assay [48].

Interestingly, none of these viral components seems to be
absolutely necessary or sufficient for nuclear entry of the PIC. In one
study a chimera was created in which the HIV-1 integrase was
replaced with the MLV integrase, and all the other described NLSs in
matrix and Vpr, as well as the entire cPPT, were eliminated; this
chimera was still able to replicate in non-dividing cells [49]. Similarly,
an HIV-1-derived virus in which the two NLSs of matrix weremutated
and Vpr, the cPPT and a large portion integrase were all removed was
still able to enter the nucleus in G1/S-arrested HeLa cells [50].
However, this mutant virus was partially impaired for nuclear import
in non-dividing primary cells, and individual analysis of the mutated
components indicated that the cPPT played the most important role.
These results suggest that many highly redundant viral components
are involved in nuclear transport of the HIV-1 PIC.

Which host factors are involved in nuclear entry of the HIV-1 PIC is
also not clear. Members of the importin α family [43,51,52], importin
β [41], importin 7 [53–55], and transportin 3 [56,57] have all been
shown to be involved in the nuclear import of either individual viral
proteins or of the PIC. Depletion of the Nup98 resulted in reduced
accumulation of HIV-1 cDNA in the nucleus, suggesting a role for
Nup98 in nuclear entry of the PIC [58]. In addition, Nup358 and
Nup153 were both identified in two genome-wide RNA interference
(RNAi) screens for host factors involved in HIV-1 infection [56,59]. A
recent study showed that a single point mutation in the HIV-1 capsid
protein could change the nuclear transport requirements of the virus
[60]. Wild-type HIV-1 was sensitive to Nup153 depletion, whereas
HIV-1 with an N74D mutation in the capsid protein was more
sensitive to Nup155 depletion, indicating that HIV-1may be flexible in
its use of host nuclear transport pathways [60]. Thus, the flexibility of
HIV-1 in its use of viral and host proteins has made the nuclear entry
mechanism of this virus extremely challenging to unravel. In addition,
one must use caution when interpreting experiments where the
readout is expression of viral proteins. It has recently been shown that
the abundance and localization of Nup62 are altered during the late
stages of HIV-1 replication [61], indicating that Nups may play
important roles during HIV-1 infection at steps other than nuclear
entry of the PIC.

Of the viruses that release their genomes in the cytoplasm prior to
nuclear entry, the nuclear import of influenza A virus is probably the
best studied (Fig. 1). The influenza A virus is an enveloped virus,
containing a segmented genome consisting of eight single-stranded
negative-sense RNAs. While most RNA viruses replicate in the
cytoplasm, influenza replication takes place in the nucleus, likely
due to the requirement for cellular splicing machinery present there
(reviewed in [62]). Each of the eight RNA segments is separately
packed with several copies of the structural nucleoprotein (NP)
and a single copy of a trimeric viral RNA polymerase into a viral
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ribonucleoprotein complex (vRNP) [63]. In this complex, NP forms a
core around which the RNA is helically wrapped [64]. The influenza A
virus is internalized into cells via the endocytic pathway using either
clathrin- or caveolae-dependent mechanisms [65–67]. The acidic
environment of the endosome then triggers the viral fusion
machinery, resulting in fusion of the viral and endosomal membranes
[68] and disassociation of the viral matrix protein M1 from the vRNPs
[69]. This allows the vRNPs to be released into the cytoplasm. Each
vRNP has a diameter of about 15 nm and a length between 50 and
100 nm [70]. Thus, vRNPs are too large to enter the nucleus by passive
diffusion, andmust rather use facilitated translocation. When purified
vRNPs are labeled with colloidal gold and microinjected into cells,
the vRNPs can be seen threading through the NPCs individually,
suggesting that they are transported into the nucleus separately
(C. Rollenhagen and N. Panté, unpublished results; Fig. 2).

All four proteins (NP and the three RNA polymerases) of the vRNPs
contain NLSs [63]. As newly synthesized NP and viral polymerases
undergo transport into the nucleus, where they assemble into new
vRNPs, it is not clear whether the NLSs of NP and the viral polymerases
are involved in the nuclear import of the newly synthesized proteins or
the incoming vRNPs. Nevertheless, NP is thought to mediate nuclear
import of the vRNPs. NP contains at least two NLSs: NLS1, also termed
thenonclassical or unconventional NLS, spanning residues 1–13 at theN
terminus [71,72], and NLS2, also termed the classical bipartite NLS,
spanning residues 198–216 [73]. While both NLS1 and NLS2 can
contribute to nuclear import of the vRNPs, various types of studies have
indicated that NLS1 is a more potent mediator of nuclear import than
NLS2 [74–76]. This differencemight be due to the location ofNLS2 in the
intact vRNP. The recent crystal structure of oligomeric NP [77] has
indicated that NLS2 might be positioned in an RNA-binding groove,
which will make NLS2 less accessible than NLS1. Consistent with this,
high-resolution immuno-gold localization of the two NLSs on purified
vRNPs revealed that NLS1 is both more highly exposed on the vRNPs,
and exposed on a greater number of vRNPs than NLS2 [78]. Although
NLS1 and NLS2 are themost studied, experimentswith recombinant NP
proteins with deletions of both NLS1 and NLS2 have indicated the
presence of additional NLSs in NP [71,79]. More recently, a bioinfor-
matics analysis revealed a third NLS in NP, which is located between
NLS1 and NLS2 and is present in nine out of 500 NP sequences screened
[80]. When fused to GFP, this third NLS was able to import the chimeric
protein into the nucleus [80]. The role of this third NLS in the nuclear
import of incoming vRNPs remains to be demonstrated.

Consistent with its role in nuclear import, NP binds to a number of
human importins α, both in vitro and in vivo [72,81,82]. Thus, it is
thought that vRNPs are transported into the nucleus using the
Fig. 2. Import of influenza A vRNPs through the NPC. Electron micrograph of a NPC cross-
section from a Xenopus oocyte that has been microinjected with influenza A vRNPs
conjugated to colloidal gold (9 nm in diameter), and prepared for EM one hour post
injection. The vRNPs were conjugated to colloidal gold as described in [157], and
microinjection was performed as described in [157,158]. A single vRNP is seen traversing
theNPC. (B) Samemicrograph as inA, butwith the nuclearmembrane boundaries and the
vRNP outlined. The cytoplasm is indicated by c, nucleus by n.
classical importin α/importin β pathway. However, a recent genome-
wide RNAi screen identified transportin 3 as a host factor required for
influenza virus replication [83], indicating that other nuclear import
pathways may play a role as well.

3.3. Genome release at the cytoplasmic side of the NPC

Herpesviruses and adenoviruses are among the largest and most
complex of the viruses that replicate in the nucleus. While each virus
has its unique cell entry and disassembly strategy, their capsids –

which are released in the cytoplasm during cell entry – attach to the
cytoplasmic side of the NPC. However, with diameters of 120 nm (for
herpesvirus) and 90 nm (for adenovirus), these capsids are too large
to cross the NPC intact; thereby each virus has developed a unique
strategy to deliver its genome into the nucleus (Fig. 3).

Herpesviruses are enveloped viruses with an icosahedral capsid
containing the viral double-stranded DNA, and a proteinaceous layer
(called the tegument) between the capsid and the envelope [23]. The
family of herpesviruses is very large; the best characterized member
in terms of nuclear import is the human herpes simplex virus 1 (HSV-
1). The virion contains more than 30 proteins and its genome is
152 kbp with over 75 open reading frames [23]. HSV-1 enters host
cells by fusing its envelope with cellular membranes; either with the
plasma membrane (which is thought to be the primary entry
pathway) or endosomal membranes after internalization by endocy-
tosis [84]. The capsid with its surrounding tegument is then released
into the peripheral cytoplasm. Some of the tegument proteins
immediately dissociate from the capsid, others are more tightly
attached and remain bound to the capsid. The tegument–capsid
structure is then transported by dynein alongmicrotubules to the NPC
[85,86]. Electron microscopy (EM) studies using tissue-culture cells
infected with HSV-1 [86], as well as in vitro binding studies of HSV-1
capsids with isolated nuclei from tissue-culture cells [87] or Xenopus
oocytes [88], demonstrated that the HSV-1 capsid binds to the
cytoplasmic side of the NPC (Fig. 4A). Binding occurs with a distinct
orientation: one of the vertices (pentons) of the capsid faces the NPC
at a distance of ~50 nm away from the NPC [86,87]. Thus, the capsids
are speculated to bind to the filaments that emanate from the
cytoplasmic side of the NPC, called NPC cytoplasmic filaments, which
are mainly composed of Nup358. A recent study addressing the role of
this Nup in HSV-1 nuclear entry showed that capsid binding to the
NPC was reduced in cells injected with an anti-Nup358 antibody and
in cells depleted of Nup358 by RNAi [89]. NPC-binding of the HSV-1
capsid is importin β-dependent and requires the small GTPase Ran
[87]. The viral proteins that mediate the association to the NPC via
binding to importin β, however, have not been identified. Tegument
proteins have been implicated because removal of these yielded
capsids that do not bind to the NPC of isolated nuclei [87]. More
recently, it was shown that microinjection of antibodies against the
tegument protein VP1/2 inhibited the binding of the HSV-1 capsid to
the NPC [89]. It remains to be determined whether VP1/2 binds to
importin β.

After binding to the NPC, the HSV-1 capsid releases its DNA into the
cell nucleus through the NPC (Figs. 1 and 3). This process leaves intact
capsids devoid of the DNA (empty capsids) associated with the NPC
[86,87] (Fig. 4B). Very little is known about the mechanisms of DNA
release from the HSV capsid, and its transport through the NPC. In vitro
binding studies of HSV-1 capsidswith isolatednuclei demonstrated that
DNA release requires thepresenceof cytosol andenergy [87], suggesting
that additional cellular factors (beyond those that support binding to the
NPC) may be needed. In addition, the tegument protein VP1/2 has long
been implicated in DNA release because a HSV-1 temperature-sensitive
mutant of this protein (tsB7) binds to the NPC, but does not release its
DNA at the nonpermissive temperature [90]. More recently, it has been
shown that proteolytic cleavage of VP1/2 is required for the release of
the viral DNA into the nucleus [91]. At the level of the NPC, Nup214 has
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Fig. 3. Schematic diagrams illustrating the protein–protein interactions involved in nuclear entry of the adenovirus and HSV-1 genomes. The HSV-1 capsid binds to the NPC via an
importin β-dependent interaction with Nup358; the tegument protein VP1/2 may mediate this interaction (1). Proteolytic cleavage of VP1/2 and interaction of UL25 with Nup214
then trigger DNA release from the intact capsid (2). In contrast, adenovirus capsids bind the NPC via Nup214 in an importin-independent manner (3). The adenovirus capsid then
recruits histone H1, importin β, importin 7 and hsp70 (4), which triggers the disassembly/conformational changes required for transportin to bind to protein VII and import the viral
DNA into the nucleus through the NPC (5).
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been suggested as the cue to trigger DNA release: Nup214 binds to the
minor capsidproteinUL25, and its depletionbyRNAi results in a delayof
viral genomedelivery into thenucleus [92]. DNA release from the capsid
is presumed to occur through the capsid portal, a ring structure formed
by 12 copies of the tegument protein UL6 located at a unique capsid
vertex [93–95].

The adenovirus capsid has also evolved a nuclear import
mechanism in which its genome is released at the cytoplasmic side
of the NPC. In contrast to HSV-1, however, the adenovirus capsid
completely disassembles at the cytoplasmic side of the NPC (Fig. 3).
Adenoviruses are non-enveloped viruses composed of an icosahedral
capsid surrounding an inner nucleoprotein core formed by the
Fig. 4. Docking of the HSV-1 capsid at the cytoplasmic side of the NPC. Electronmicrographs
of NE cross-sections from Vero cells infected with HSV-1. At later times of infection, both
DNA-containing, filled capsids (black arrow in panel A) and uncoated, empty capsids (black
arrow in panel B) are located in close proximity to the NPC. Occasionally, capsids can be seen
associatedwith cytoplasmic filaments of the NPC (arrowheads in panels A and B). Reprinted
with permission from Ojala et al. [87].
double-stranded DNA genome and several copies of four viral core
proteins [96]. A distinct structural feature of adenoviruses is the fibers
projecting from the vertices of the capsid. The adenovirus genome
comprises about 36 kbp and encodes 45 proteins, of which only 12 are
found in the virion [96]. Adenoviruses enter their host cells by
receptor-mediated endocytosis and escape the endosome using a
capsid component with membrane-lytic activity [97,98]. Both the
cellular internalization and the acid environment of the endosome
trigger virion disassembly [99,100], which continues in the cytosol. By
the time it is delivered to the NPC via microtubule- and dynein
mediated motility [101,102], the virion has shed its fibers and several
capsid-stabilizing proteins, and some of the remaining viral proteins
have been proteolytically processed [100,103]. Upon binding to the
cytoplasmic side of the NPC [104,105], adenovirus capsids undergo
complete disassembly resulting in the subsequent nuclear import of
the viral genome and capsid proteins through the NPC [106].

Experiments using several anti-Nups antibodies demonstrated
that the binding of the adenovirus capsid to the NPC is through
Nup214 [106], which is located at the base of the NPC cytoplasmic
filaments. Thereby, adenovirus is able to dock closer to the centre of
the NPC than HSV-1. Strikingly, neither cytosol nor importins α or β
are required for binding of the adenovirus capsid to isolated NE [106].
Capsid disassembly is also blocked by antibodies against Nup214
[106], implying that NPC binding is a cue for final capsid disassembly.
Fluorescence resonance energy transfer experiments following capsid
disassembly in infected cells indicated that the half-time for capsid
disassembly is 60 min [107], which coincides with the accumulation
of the capsids at the NPC of infected cells [99,105]. Capsid disassembly
and nuclear import of the viral genome requires cellular factors,
including nuclear import receptors, hsp70 and histone H1 [106,108].

Because nucleic acids are transported through the NPC as
nucleoproteins, and because the adenoviral DNA is condensed with
viral core proteins, these proteins have been implicated in viral DNA
nuclear import [109]. Consistent with this idea, protein VII, the most
abundant core protein and the most tightly associated with the viral
DNA, has been shown to contain NLSs [109,110] and to bind in vitro to
several nuclear import receptors including importin α, importin β,
importin 7 and transportin [109]. The latter is the nuclear import
receptor for several RNA binding proteins (e.g. hnRNP A1), and has
recently been shown tomediate the nuclear import of exogenous DNA
[111]. The role of transportin in the nuclear import of both protein VII
and the viral DNA was recently demonstrated using a permeabilized
cell nuclear import assay and recombinant protein VII or purified viral
capsids [112]. Taken together these data have led to the currentmodel
for nuclear import of the adenoviral genome, which states that after
docking to the NPC through Nup214, the adenovirus capsid recruits
cellular factors (including histone H1, importin β, importin 7 and
hsp70), which triggers the disassembly/conformational changes
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Fig. 5. Nuclear import of intactHBV capsids through theNPC. Electronmicrographs of aNE
cross-section from a Xenopus oocytemicroinjectedwith HBV capsids and prepared for EM
onehourpost injection, asdescribed inFig. 2. TheHBVcapsids canbeseencrossing theNPC
and lined up along the central channel of the NPC. (B) Samemicrograph as in A, but with
the nuclear membrane boundaries and the HBV capsids outlined. The cytoplasm is
indicated by c, nucleus by n.
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required for transportin to bind to protein VII and import the viral
DNA into the nucleus through the NPC [112] (Fig. 3).

3.4. Nuclear entry of intact capsids through the NPC, followed by genome
release

HBV and baculovirus are among the viruses with capsids small
enough to cross the NPC intact. HBV is an enveloped virus with a
diameter of 42 to 47 nm, containing a capsid with a single copy of the
partially double-stranded DNA genome (3.2 kb) [113]. The capsid is
composed of 240 copies of a single type of protein (the core protein,
21 kDa), which is arranged into an icosahedral capsid of 36 nm in
diameter [114]. Aminor population of capsidswith a diameter of 32 nm
and composed of 180 copies of core protein also exist. The biological
significance of the two different classes of capsids is not clear. Due to the
lack of tissue-culture cell lines that can be infected with HBV, the
mechanismofHBVcell entry remainsuncertain. AnalogywithduckHBV
suggests that the capsid is released in the cytoplasm after fusion of the
viral envelope with a cellular membrane [115] and is transported along
microtubules towards the nucleus [116,117]. Studies with recombinant
capsids (obtained by expressing the core protein in E. coli), and
semipermeabilized cellsfirst demonstrated that theHBV capsid binds to
theNPC in aphosphorylation- and importinα andβ-dependentmanner
[118]. Phosphorylation of the C-terminus of the core protein is
important to expose two cNLSs [118–120]. Following the nuclear
import of phosphorylated recombinant capsids after their injection into
Xenopus oocytes by EM it was demonstrated that the capsid not only
binds to the NPC, but is able to cross the NPC without disassembly [12]
(Fig. 5). Capsids are, however, not released into the nucleus but get
arrested within the NPC nuclear basket – a filamentous structure that
extends fromtheNPC into thenucleus– suggesting thatuncoatingof the
viral genome occurs at the nuclear side of the NPC [12]. This idea was
verified by in-situ hybridization experiments in semipermeabilized cells
[121]. More recently, HBV capsidswere shown to bind to Nup153 [122],
which resides in the nuclear basket.

HBV uses a unique replication strategy that involves reverse
transcription of the initially packaged pregenomic RNA into a partially
double-stranded DNA [113]. This process is confined to the interior of
intact capsids. Thus, during infection, different types of HBV capsids
exist, which have their genome at different stages of maturation.
Experiments with capsids containing nucleic acid at different stages of
maturation demonstrated that capsids containing the mature genome
disassemble at the nuclear basket, releasing their DNA into the
nucleus, while those with an immature genome remain bound to
Nup153 [121,122]. How Nup153 triggers capsid disassembly and
more specifically how it induces disassembly of capsids with mature
and not with immature genomes still remains to be established.

In comparison to HBV, the baculovirus capsid is not arrested at the
nuclear basket (Fig. 1). Baculoviruses are rod-shaped (30–60×250–
300 nm), enveloped viruses with circular double-stranded DNA genomes
ranging in size from 90 to 180 kbp with approximately 154 open reading
frames [123]. Baculoviruses are unique compared to other viruses because
they have two infectious forms: budded virions comprising a single virion
envelopedbyaplasma-derivedmembrane,which is involved in cell to cell
transmission, andocclusion-derivedvirions comprising envelopedvirions
embedded within a crystalline matrix of protein, which are involved in
initial host infection when released into the environment upon the death
of the host [123]. Although both the occlusion-derived virion and budded
virion forms contain rod-shaped capsids enclosed within envelopes of
different origins, it is the capsid which eventually gets released into the
cytoplasm, is propelled through the cytoplasm by virus-induced actin-
polymerization [124–126] and delivers the genome into the nucleus by a
mechanism that is largely unknown.

EM studies of baculovirus infected cells have suggested nuclear entry
mechanisms that might depend on the type of virus. Baculoviruses are
divided into two genera: Granulovirus (GV) and Nucleopolyhedrovirus
(NPV). The first study reported capsids from the GV Trichoplusia ni
granulosis virus docking at the cytoplasmic side of the NPC of cells from
infected larvae [127]. Someof theNPC-associated capsids appearpartially
empty, suggesting a mechanism of DNA nuclear import similar to that of
HSV-1, in which the viral genome is released through the NPC, leaving
behind empty capsids. Others have detected intact capsids of several
types of NPVs at the cytoplasmic side of theNPC and inside the nucleus of
cells from larvae inoculated with NPV [128–130]. However, the capsids
seen in the nucleus might be newly assembled capsids produced during
infection. To clarify this issue a study followed the infection pathway of
the NPV Autographa californica multiple-capsid nucleopolyhedrovirus
(AcMNPV) in tissue-culture cells arrested at G1/S, and detected AcMNPV
capsids at the cytoplasmic side of the NPCs and inside the nucleus [131].
Injection of purified AcMNPV capsids into Xenopus oocytes, a cell system
in which the virus does not replicate, also reveals capsids docking at the
NPCs and inside the nucleus (S. Au and N. Panté, unpublished results;
Fig. 6), suggesting that the intact AcMNPV capsid enters the nucleus
through the NPC. Thus, the baculovirus genomemight enter the nucleus
by two separate mechanisms depending on its genus. In any case, the
viral and cellular proteins or receptors that are involved in the initial
binding step of the capsid to the NPC are largely unknown. Similarly, the
viral and cellular components triggering genome release and capsid
disassembly remain to be determined.

Another virus which likely enters the nucleus largely intact is the
non-enveloped DNA polyomavirus SV40. SV40 enters the cell by an
unusual mechanism: the virus is taken up by caveolar endocytosis, and
then traffics to the ER [132]. In the ER, the host chaperoneprotein ERp29
triggers a conformational change in the capsid [133]. This results in the
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Fig. 6.Nuclear import of baculovirus AcMNPV capsids. Electronmicrographs of NE cross-sections from Xenopus oocytes microinjected with baculovirus AcMNPV capsids as described
in Fig. 2. Oocytes were prepared for EM at four hours post injection. Intact capsids (arrows) can be seen docking at the cytoplasmic side of the NPCs (arrowheads) (A) and inside the
nucleus (B). The cytoplasm is indicated by c, nucleus by n.
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exposure of the capsid protein VP2, which then integrates into and
perforates the ER membrane, releasing the capsid or subviral particle
[134]. It is unclear whether the virus escapes from the ER to the
cytoplasm and then enters the nucleus through the NPC, or whether it
enters the nucleus directly from the ER by penetrating the INM. The
current evidence favors the former possibility. When SV40 is micro-
injected into cells, capsids can be seen traversing the NPCs [135].
However, because microinjection bypasses the normal entry route it is
unclear whether this actually occurs during infection. In addition,
microinjection of antibodies against SV40 into the cytoplasm inhibits
productive infection [136], suggesting that some virions must indeed
pass through the cytoplasm. But it is possible that rather than passing
through the cytoplasm en route to the nucleus, some virions enter the
cytoplasm to perform other functions necessary for infection. It is also
possible that SV40 can enter the nucleus via multiple routes. Thus, the
nuclear entry pathway of SV40 remains elusive.

3.5. Nuclear entry via disruption of the NE

Whilemost viruses that replicate in the nucleus have been shown to
make use of the host nuclear transport machinery, including the NPCs,
another route is also possible: directly through the nuclearmembranes.
The small, non-enveloped, single-stranded DNA parvoviruses may use
such a mechanism (Fig. 1). Parvoviruses enter the cell via receptor-
mediated endocytosis, escape from endosomeswith the contribution of
a viral phospholipase, andmake theirway towards thenucleus, possibly
bymicrotubule-mediated transport (reviewed in [137]). Several lines of
evidence indicate that the parvoviral genome enters the nucleus in
association with an intact capsid after escape from endosomes:
microinjection of antibodies against the capsid of the human parvovirus
adeno-associated virus 2 (AAV2) into the nucleus inhibits productive
infection of tissue-culture cells [138]. In addition, immuno-gold EM has
revealed apparently intact capsids of canine parvovirus (CPV) in the
nucleus of infected cells in the presence of cyclohexamide, which
prevents the synthesis of new capsid proteins [139]. At only approx-
imately 26 nm in diameter [24], parvovirus capsids are small enough to
enter the nucleus intact through the NPC, and it has been assumed that
this is howtheparvovirusgenomeaccesses thenucleus.However,when
the parvovirus minute virus of mice (MVM) was microinjected into
Xenopusoocytes and visualized byEM,unlike influenza vRNPs (Fig. 2) or
HBV capsids (Fig. 5), the capsids were not observed in transit through
NPCs; instead it was found thatMVM induces disruption of theNE [140]
(Fig. 7). MVM has also been shown to induce disruption of both the NE
and nuclear lamina in infected mouse fibroblast cells [141]. MVM-
induced NE and nuclear lamina disruption requires the apoptotic
protease caspase-3, and when caspase-3 is inhibited viral capsids
accumulate at the NE, suggesting that nuclear entry is via disruption of
the nuclear membranes (S. Cohen, A. Marr, P. Garcin and N. Panté,
manuscript in preparation). In addition it has been shown that AAV2
enters purified nuclei independently of the NPC [142], suggesting that
this nuclear entry mechanism is a common feature of parvoviruses.

While parvoviral capsid proteins do contain functional NLSs
[143–145], it is likely that these signals play a role at a different stage of
the virus life cycle. For example, theMVMcapsid ismade up of the capsid
proteins VP1 andVP2, in an approximately 1:5 ratio [146]. These proteins
are synthesized in the cytoplasm, where they form trimers made up of
either VP2 alone, or of two copies of VP2 and one copy of VP1; these
trimers are then transported into the nucleus, where capsid assembly
occurs [147]. Nuclear import of the trimers is mediated by either an
unconventional three-dimensional nuclear localization motif, present in
both VP1 and VP2, or by two N-terminal NLSs that are unique to
VP1 [147]. However, the nuclear localization motif is buried within the
capsid of assembled virions [143,148], and thus cannot be involved in
the nuclear entry of incoming capsids. The NLSs in VP1 are also buried
within assembled nascent virions; however, there is evidence that the
VP1 N-terminus becomes externalized when virions are exposed to
acidification in endosomes during the onset of infection [149–151].
Whether the VP1 NLSs are ever sufficiently exposed to interact with
importins is unclear. If the VP1 NLSs do become sufficiently exposed to
interact with importins, then it is possible that these NLSs play a role in
targeting of the parvovirus capsid to the NPC prior to NE disruption and
nuclear entry.

In addition to parvoviruses, there are other viruses that may also
use a similar strategy. As mentioned above, SV40 may be able to enter
the nucleus from the ER by penetrating the INM. This presumably
would require disruption of the nuclear lamina. Recent findings show
that caspase-6 is activated early on during infection of cells with SV40
[152]. Together with capsase-3, caspase-6 is one of the proteases
involved in apoptotic cleavage of nuclear lamins [153]. Thus, caspase-
6 activation may be induced by the virus in order to cause lamina
disruption, which could then facilitate nuclear entry of the virus via
the INM. Lastly, it has been shown that overexpression of the HIV-1
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Fig. 7. Parvoviruses induce disruption of the NE. Electron micrographs of NE cross-
sections from Xenopus oocytes that have been (A) mock-injected, (B) injected with the
parvovirus MVM, or (C) injectedwith CPV, and prepared for EM one hour post injection.
Microinjection performed as described in Fig. 2. Disruptions of the NE are indicated by
brackets. The cytoplasm is indicated by c, nucleus by n.
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protein Vpr induces ruptures of the NE [154]. It has been suggested
that these ruptures may mediate entry of the PIC into the nucleus
[155]. However, it is unclearwhether Vpr-induced NE rupture actually
occurs during infection of cells with HIV-1.

4. Concluding remarks

Evidently, viruses have evolved a wide variety of strategies to
invade the host cell nucleus. This allows the virus to make use of the
cell's machinery for DNA replication and transcription. Virus traffick-
ing and nuclear entry is also intimately linked with virion disassem-
bly. In addition to using the cell's DNA replication machinery, viruses
take advantage of compartmentalized cellular cues to ensure that
genome release occurs at the correct time. Thus, in addition to cues
such as acidification of endosomes, viruses also use binding to NPC
proteins, importins or nuclear proteins to trigger genome release.

The different nuclear entry strategies used by viruses depend largely
on the size and structure of the virus, and have advantages and
disadvantages. The strategy used by MLV – entry during mitosis when
the barrier of the NE is absent – has the disadvantage of restricting the
virus to infection of dividing cells. Meanwhile, HIV-1 and influenza A
undergoextensivedisassembly in the cytoplasm.This is likelybecause the
structureof the influenzavirion is such that the component releasedupon
viral envelope fusion with the endosomal membrane is a compact and
stable vRNP; similarly, it seems that the retroviral PIC must form in the
cytoplasm. The consequence is that for both these viruses, the resulting
nucleoprotein complex is small enough to traverse theNPCusing the host
transportmachinery. In contrast, for herpesviruses and adenoviruses, the
viral component released to the cytoplasm is a large, relatively stable
icosahedral capsid. Since the capsid is too large to traverse the NPC,
dockingoccurs at theNPCcytoplasmic side. In both cases, interactionwith
theNPC is used as a cue to trigger genome release. However, in the case of
HSV-1 this involves ejection of the genome from an intact capsid, while
the adenovirus capsiddisassembles completely. Viruses such asHBVhave
capsids small enough to traverse the NPC intact. This strategy has the
advantage that viral genomes are protected from detection and
degradation in the cytoplasm. However, having entered the nucleus
intact, disassembly must occur in the nucleus. For HBV, binding at the
nuclear side of the NPC serves as a cue for genome release. Lastly,
parvoviruses seem to enter the nucleus by inducing disruption of the NE.
It is currently puzzling what the advantages might be for a virus to use a
nuclear entry strategy that involves disruptionof theNE. It is possible that
NE disruption results in localized changes in the compartmentalization of
cellular proteins in a way that is beneficial for the virus, e.g. cytoplasmic
proteins used by the virus for a replication or assembly step are able to
leak into the nucleus. It is also possible that disruption of the ONM,which
is continuous with the ER, results in release of calcium and that
subsequent signaling plays a role in infection.

While significant progress has been made in understanding the
general nuclear entry mechanisms used by viruses, much remains to be
done. It has become evident that different viruses use different host
nuclear import pathways, and viral genomes gain access to the nucleus of
their host cells, not only by using the cellular nuclear import machinery,
but also components of other cellular pathways, such as proteins of the
apoptoticmachinery. It is also evident that even viruses using the classical
nuclear import receptors have evolved mechanisms to adjust the cell
machinery for their needs. Although we now know more about how
viruses access the nucleus, many molecular details, such as which viral
NLSs are exposed at different times during infection, which viral protein
interacts with cellular components, and which host transport factors are
involved in each step, remain to be elucidated. For many viruses – non-
enveloped viruses in particular – nuclear entry mechanisms have not
been studied at all. However, one must use caution when designing
experiments to address nuclear entry of viral genomes. Any study on
nuclear targeting of viral components must ensure that observed defects
are at the level of nuclear entry and not at earlier steps such as transport
along microtubules by molecular motors, which can also have an impact
on nuclear delivery [156]. In addition, one must design experiments to
distinguish between viral NLSs and cellular proteins that play a role in the
delivery of viral genomes to the nucleus prior to replication, and those
that are important for nuclear import of newly synthesized viral proteins
when capsid assembly occurs in the nucleus.

The nuclear delivery of viral genomes is an important field in
virology. Discoveries in this field may lead to the development of
novel classes of antiviral drugs. We imagine that in the future both
viral NLSs and host transport factors could be successfully targeted to
limit viral infection and reduce human disease.
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